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Abstract: This paper studies the problem of placing two point fingers to cage a
mobile rigid body in a Euclidean space of arbitrary dimension. (To cage an object is
to arrange obstacles so that all motions of the mobile body are bounded.) This paper
shows that if a compact connected contractible object is caged by two points, then it
is either stretching caged or squeezing caged or both, where stretching caged means
the body is trapped even if the point fingers are given the freedom of moving apart,
and squeezing caged means the the body is trapped even if the fingers are given the
freedom of moving closer. This result generalizes a previous result by Vahedi and
van der Stappen [18] which applied to two points trapping a polygon in the plane.
Our use of a topological approach led to the generalization, and may lead to further
generalizations and insights.

1 Introduction

A cage is an arrangement of obstacles that bounds the collision-free paths of
some object. Caging is interesting for two reasons. First, caging an object is a
way to manipulate it without immobilizing it. Second, even if an immobilizing
grasp is needed/preferred over a cage, the cage may provide a useful waypoint
to the immobilizing grasp. From some cages a blind policy exists that achieves
an immobilization while preserving the cage.

Caging is weaker than immobilizing. While the objective of an immobi-
lizing grasp might be to precisely locate an object relative to the hand, the
objective of a cage is just to guarantee that the object is within the reach of
the manipulator and cannot escape. By weakening the objective, the ultimate
task may be easier both in theory and in practice.

Caging an object with point fingers assumes that the fingers are rigidly
fixed relative to the hand and to each other. Vahedi and van der Stappen[18]
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2 Alberto Rodriguez and Matthew T. Mason

recently introduced a variation where the fingers are allowed some relative
motion while the object remains caged. An object is squeezing caged if all
its motions are bounded, even if the fingers are allowed to move while not in-
creasing the initial separation between them. Similarly, the object is stretching
caged if it cannot escape, even if the fingers are allowed to move while not
decreasing the initial separation between them. Vahedi and van der Stappen
showed that any cage of a planar polygon by two disk fingers is either a
squeezing cage, a stretching cage, or both.

This paper extends Vahedi and van der Stappen’s result to include arbi-
trary compact connected contractible objects in Euclidean spaces of arbitrary
dimension. Thus the squeezing and stretching caging characterization becomes
a fundamental property of the configuration space of a two fingered manipu-
lator.

2 Related Work

The earliest mathematical work on trapping objects was by Besicovitch in
1957 [1] and Shephard in 1965 [13]. Both worked on the problem first posed
by Besicovitch as a contest problem to undergraduates, of trapping a sphere
with a net. However, it was not until 1990 that Kuperberg [3] posed a formal
definition of the 2D caging problem:

“Let P be a polygon in the plane, and let C be a set of k points which
lies in the complement of the interior of P . The points capture P if P
cannot be moved arbitrarily far from its original position without at
least one point of C penetrating the interior of P . Design an algorithm
for finding a set of capturing points for P .”

Since then, there have been several approaches to the problem, from differ-
ent perspectives and with different goals. Rimon and Blake [10, 11] introduced
the notion of a caging set : the maximal connected set of caging configurations
that contains a given grasping configuration. They applied Morse Theory to
the case of 1-parameter two-fingered grippers to show that the limit configura-
tions where the cage is broken correspond to equilibrium grasps of the object.
Later, Davidson and Blake [2] extended the result to 1-parameter 3-fingered
planar grippers.

Sudsang and Ponce [15, 16] proposed and studied the application of caging
to motion planning for three disc-shaped planar robots manipulating an ob-
ject. They provided a geometrical method to compute conservative approxi-
mations of the so called Inescapable Configuration Space regions. They also
analyzed in-hand manipulation using caging [17, 14].

Pereira, Campos and Kumar [9] applied caging to decentralized multirobot
manipulation. They used the geometrical description of the robots to develop
a conservative, on-line and decentralized test to maintain cageness.



Two Finger Caging: Squeezing and Stretching 3

Vahedi and van der Stappen [18] formalized squeezing and stretching
caging to cage polygonal objects with two disc-shaped fingers, and used that
idea to develop the first complete algorithm to compute the entire caging set of
two fingers. Their algorithm generates a graph structure in the configuration
space of the fingers that finds all caging grasps in O

(
n2 log n

)
and handles

cageness queries in O (log n).

3 Preliminary Concepts

3.1 Configuration Space

Assume the workspace to be Rd, and let the manipulator be a set of position-
controlled point fingers p1 . . . pn in Rd. Let Pi be the configuration space
of finger pi, and let M = P1 × . . . × Pn be the configuration space of the
manipulator (dimM = n · d).

We assume the object O is a compact region of the workspace. It induces
an obstacle for each of the fingers, and therefore for the manipulator. Let Oi
be the obstacle induced for finger i in Pi, and let OM be the obstacle induced
for the manipulator in M . We can decompose the manipulator obstacle:

OM = { (p1 . . . pn) ∈M | ∃pi ∈ O } =
n⋃
i=1

{ (p1 . . . pn) | pi ∈ O } =
n⋃
i=1

OMi

(1)
where OMi is the obstacle induced in M by the interaction of object O with
finger i.

Following the convention of [12, 18] we define the free space of the manip-
ulator to be M free = M \ Int

(
OM

)
, where Int

(
OM

)
is the interior of OM as

a subset of Rn·d. We define the configurations in M free to be the admissible
configurations of the manipulator. This definition induces a free space in the
configuration space of finger i, P free

i = Pi \ Int (O).
Note that there are alternative, more liberal, definitions of admissible con-

figurations [5, 4]. The advantage of the stricter convention is that the free
space is regular—it is the closure of its interior. Consequently it has no “thin
bits” (Fig. 1). We will skip the proof to conserve space. By [5], regularity of
the free space enables the following proposition:

Proposition 1 (Connectivity of the Free Space). For any two config-
urations in the same connected component of the free space, an admissible
connecting path exists, and lies in the interior of the free space except possibly
at some isolated points.

Proposition 1 implies that if two configurations of the manipulator are in
the same connected component of the free space, they can be joined by a path
that avoids contact with the object O except at isolated configurations. This
property is essential to prove the main result in Section 5.3.
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Fig. 1. a) Workspace: two obstacles and a moving object. b) Cspace obstacles. c)
Free space. d) A more liberal definition of free space with unwanted thin bits.

3.2 Paths in the Configuration Space

Given a configuration c of the manipulator in M free, a closed path based at c
refers to a parameterized curve α : [0, 1] −→ M free with α(0) = α(1) = c. A
contractible path is a closed path that is path homotopic to a point in M free.

Contractibility of a path, then, implies the existence of a continuous map
H, called a homotopy of paths:

H : [0, 1]× [0, 1] −→M free (2)

such that H(t, 0) = α(t) and H(t, 1) = H(0, s) = H(1, s) = c, for all t, s ∈
[0, 1].

The next proposition, with proof in appendix A, relates the contractibil-
ity of paths in M free to the contractibility of the individual fingers’ paths.
First we define Πi, the natural projection from the configuration space of the
manipulator to the configuration space of finger i:

Πi : M −→ Pi
(p1 . . . pn) −→ pi

(3)

Proposition 2 (Characterization of contractible paths). A closed path
α at c is contractible in M free if and only if for each finger i, Πi (α) describes
a contractible path in P free

i .

4 Caging

4.1 Introduction to Caging

To formalize the definition of caging proposed by Kuperberg [3] we could
consider an object to be caged if and only if the object configuration lies in a
compact connected component of its free space.

However, it is simpler and equivalent to consider the object to be fixed, and
instead study the rigid motions of the manipulator, yielding the definition:
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Fig. 2. Examples of squeezing (left) and stretching (right) caging configurations.

Definition 1 (Caging Configuration). Let Mc be the set of all configura-
tions with the same pairwise finger distances as c. A caging configuration is a
configuration c of the manipulator that lies in a compact connected component
of M free ∩Mc.

Hence, an object is caged if and only if the manipulator is unable to escape
from the object while preserving its shape.

In the case of a two fingered manipulator, the Euclidean distance between
the fingers is the only constraint that defines Mc. Let the map r : M −→ R
be that distance. The set Mc is then defined as:

Mc = { q ∈M | r(q) = r(c) } (4)

4.2 Squeezing and Stretching Caging

Intuitively, the manipulator is in a squeezing (stretching) caging configuration
if the object cannot escape, even by allowing the fingers to move closer (sepa-
rate), Fig. 2. The definition can be formalized in a similar way as in the case
of caging.

Let M c and M c be the sets:

M c = { q ∈M | r(q) ≤ r(c) } (5)
M c = { q ∈M | r(q) ≥ r(c) } (6)

Then we define:

Definition 2 (Squeezing Caging configuration). Configuration c of the
manipulator that lies in a compact connected component of M free ∩M c.

Definition 3 (Stretching Caging configuration). Configuration c of the
manipulator that lies in a compact connected component of M free ∩M c.

The main objective of this work is to show that all caging configurations are
either squeezing caging, stretching caging or both.
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5 The Squeezing and Stretching Caging Theorem

5.1 The Result

Theorem 1 (Squeezing-Stretching Caging). Given a two finger caging
configuration of a compact connected contractible object in Rd, it is squeezing
caging, stretching caging or both.

We will prove the contrapositive. Suppose that a certain two finger config-
uration c is neither squeezing nor stretching caging. That means there is an
escape path α if squeezing is permitted, and there is also an escape path α if
stretching is permitted. We will use the existence of these two escape paths to
construct a third escape path in Mc, establishing the noncageness of c. From
a topological perspective, we can understand the constructed escape path as
an average of the squeezing and stretching escaping paths.

The proof consists of two steps (Fig. 3):

1. Using the two escape paths we build a closed contractible curve in M free,
with the property that every crossing through Mc, except for c, is known
to be noncaging.

2. When the contractible curve is actually contracted, the intersection with
Mc will give a rigid body path from c to one of the known noncaging
configurations.

Fig. 3. The proof of theorem 1. (left) The contractible curve crossing Mc “at infin-
ity”. (right) Simplest case intersection between the contraction and Mc.

5.2 Building the Contractible Curve

The contractible curve must satisfy two requirements:
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• All crossings of the curve through Mc, except for c, must be known to be
noncaging.

• Both the curve and the contraction must live in M free.

Let B ⊂ Rd be a ball containing O such that any placement of the fingers
outside B is a noncaging configuration of the manipulator. We will say that
any configuration with the fingers outside B is at infinity. Note that if O is
compact, B always exists. For the case of two fingers we can choose B to be
any circumscribing ball.

We can assume the escape paths α and α to terminate respectively at
configurations c and c at infinity. Let α ⊕ α be the curve defined by the
concatenation of both escaping paths. Closing α⊕α with an additional curve
lying entirely outside B guarantees that all crossings of the complete curve
through Mc will be noncaging. Hence we just need to see that always exists
a curve β that closes α⊕ α outside B in such a way that the complete closed
curve is contractible.

By proposition 2, we can construct the completion of the curve indepen-
dently for each finger. As long as each projected path Πi (α⊕ α) is closed
in a contractible way in P free

i , the curve in M and its contraction will be in
M free, satisfying the second requirement. Let βi be the curve in P free

i that
closes Πi (α⊕ α):

• If d > 2, as O is contractible (i.e. does not have holes) any path from Πi(c)
to Πi(c) gives a closed contractible path.

• If d = 2, choose βi to go around B as many times as needed to undo the
winding number of Πi (α⊕ α) (Fig. 4).

The curve β = (β1 . . . βn) closes α⊕ α in a contractible way.

Fig. 4. Completion of the contractible path β1 in P free
1 .
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5.3 Intersection of the Contraction with Mc

The contractibility of the constructed path implies the existence of an homo-
topy H, as in equation (2), that contracts the closed path to c in M free.

Let H(S) be the image of the square S = [0, 1] × [0, 1] in M by the
homotopy map. We are interested in the intersection of the homotopy image
with the rigid motions set, H(S) ∩Mc. It may seem obvious that an escape
path lives within that intersection, as illustrated by the simple case of Fig. 3,
but for a more pathological homotopy the path may not exist. We will show
that H can always be approximated by a well behaved contraction that yields
a nondegenerate intersection.

The construction of the intersection relies on lemma 1, borrowed from
differential topology [8].

Lemma 1. Let M be an m-dimensional manifold and N an n-dimensional
manifold, with m ≥ n. If f : M −→ N is smooth, and if y ∈ N is a regular
value, then the set f−1(y) ⊂M is a smooth manifold of dimension m− n.

If M is a manifold with boundary and y is also regular for the restriction f |
∂M , then f−1(y) is a smooth (m− n) manifold with boundary. Furthermore,
the boundary ∂

(
f−1(y)

)
is precisely equal to the intersection of f−1(y) with

∂M .

The rest of this section uses lemma 1 to construct the intersection H(S)∩Mc,
requiring some special care to satisfy the smoothness requirements.

To simplify later arguments we will change the domain of the homotopy
from a square to a disc. We can view the homotopy H as a parametrization
of the set H(S), where ∂S is mapped to the contractible curve α⊕β⊕α with
the inconvenience that three sides of S are mapped to c. Let π be the quotient
map that identifies those three sides of the square into one single point q. The
map π transforms S into a disc D, whose boundary is a one to one mapping
of the contractible curve.

The characteristic properties of the quotient topology [6], expressed in
theorem 2, guarantee the existence and uniqueness of a continuous map H̃ :
D −→M free that commutes the diagram on Fig. 5. From now on all mentions
to the contraction will refer to that quotient induced map H̃.

Theorem 2 (Passing to the Quotient). Suppose π : X −→ Y is a quotient
map, B is a topological space, and f : X −→ B is any continuous map that
is constant on the fibers of π (i.e., if π(p) = π(q), then f(p) = f(q)). Then
there exists a unique continuous map f̃ : Y −→ B such that f = f̃ ◦ π:

X

π

��

f

  @
@@

@@
@@

@

Y
f̃

// B
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Fig. 5. Construction of the homotopy H̃ induced by the quotient map. See that
H̃(q) = c.

Let F be the composition of the contraction H̃ with the distance map r:

F : D H̃−→M free r−→ R (7)

If rc is the distance between the finger points at c, then F−1(rc) parameterizes
the intersection set H̃(D)∩Mc. H̃ maps the set F−1(rc)∩∂D to the crossings
of the contractible curve through Mc. By construction, except for q that maps
to c, all points in F−1(rc)∩∂D are mapped by H̃ to noncaging configurations.

Showing that c is also a noncaging configuration – i.e. there is a rigid
escape path for c – is equivalent to finding a path from q to any other point
in ∂D within F−1(rc). Lemma 1 allow us to construct the set F−1(rc) and
prove the existence of that path.

If F is smooth and rc is a regular value, lemma 1 says that F−1(rc) is a
one-dimensional smooth manifold with the set F−1(rc)∩ ∂D as boundary – a
finite union of copies of S1 entirely in the interior of D and smooth paths that
begin and end in ∂D. Since q ∈ F−1(rc) and q ∈ ∂D, it follows that q must be
connected to another point in ∂D within F−1(rc). Thus, the connecting curve
in D maps to a rigid escape path from q and the theorem is true. All that
remains is to see what happens when F is not smooth or rc is not a regular
value.

Smoothness of H̃

To apply lemma 1 to F , F = r ◦ H̃ must be smooth, hence the contraction
H̃ needs to be smooth. For the contraction to be smooth, the contractible
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curve α⊕ β ⊕α must also be smooth. We address this issue using theorem 3,
Whitney’s Approximation Theorem [7], to construct smooth ε-approximations
of both.

Theorem 3 (Whitney Approximation Theorem). Let M be a smooth
manifold and let F : M −→ Rk be a continuous function. Given any positive
continuous function ε : M −→ R, there exists a smooth function F̂ : M −→ Rk
that is ε-close to F (‖F (x) − F̂ (x)‖ < ε(x) ∀x ∈ M). If F is smooth on a
closed subset A ⊂M , then F̂ can be chosen to be equal to F in A.

The challenge is to preserve two key properties of H̃ when we construct the
approximation:

1. All crossings of Mc through the boundary of H̃(D), other than c, must
remain noncaging.

2. The approximation of H̃ must still live in M free.

The first property was obtained by making the contractible curve go to in-
finity before crossing Mc. Spurious crossings of Mc must be prevented. This is
especially awkward near the crossing at c. No matter how small an ε we choose,
the ε-approximation of H̃ could cross again. Similarly, where H̃ makes con-
tact with the obstacle, the ε-approximation might violate the second property
by leaving the free space M free. The following procedure produces a smooth
approximation while avoiding the problems:

1. Replace the contractible curve locally at c by a smooth patch in M free,
as shown in Fig. 6. This is possible because of our “stricter” definition of
free space, ensuring the free space has no thin bits. Even if c is in contact
with OM , there is still freedom to smoothly escape the contact through
half of the directions on the tangent space.

2. Apply a similar patch wherever the contractible curve contacts the object.
Thanks to the regularity of the free space, proposition 1 guarantees that
these contact points are isolated configurations.

3. Apply theorem 3 to approximate the contractible curve by a smooth curve,
equal to the original curve on the patches.

4. Define the contraction H̃ as before, but using the smoothed contractible
curve.

5. If the contraction makes contact with the object, the approximation could
violate the second key property. Repeat the previous strategy of defining
smooth patches.

6. Apply theorem 3 once more to approximate the contraction by a smooth
one Ĥ that equals the original contraction on the closed set ∂D ⊂ D and
on any patches, and otherwise lives in the free space M free.

Regularity of rc

If rc is a regular value of the now smooth mapping F̂ = r ◦ Ĥ, lemma 1
says that F−1(rc) is a one-dimensional smooth manifold. We have seen that
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Fig. 6. Smooth patch for replacing the contractible curve in a neighborhood of c
and eliminate possible nonsmoothness at c.

consequently there is a smooth escape path within F−1(rc) that connects q
with another point in ∂D, mapped by Ĥ to a known noncaging configuration.
But if rc is not regular then F−1(rc) might not be a manifold and the argument
fails. This section shows that in such cases the escape path connecting q with
a boundary point of F−1(rc) still exists.

Sard’s Theorem characterizes the critical points of a smooth map:

Theorem 4 (Sard’s Theorem). Let f : U −→ Rp be a smooth map, with U
open in Rn and let C be the set of critical points; that is the set of all x ∈ U
with rank dfx < p. Then f (C) ⊂ Rp has measure zero.

The theorem says that for a smooth real valued function, the set of regular
values is dense on the image of the function. Consequently, given any critical
value z of the smooth function f , there is a monotonic sequence of regular
values converging to z, {zn}n −→ z.

In the specific case of the smooth map F̂ : D −→ R, if rc ∈ R is a critical
value, let {rn} be a monotonic sequence of regular values converging to rc.
Let εn be the positive difference rc − rn so that:

{εn}n −→ 0 and {rc − εn}n −→ rc (8)

We know that the contractible path goes from M c to M c locally at c. As
Ĥ maps ∂D to the contractible curve, the restriction F̂ |∂D is monotonic in
a neighborhood of q. Therefore we can expect to find a monotonic sequence
of points {qεn}n in a neighborhood of q at ∂D that converges to q, such that
qεn ∈ F−1(rc − εn) ∀n.

The sets F−1(rc − εn) are smooth one-dimensional manifolds, because
rc− εn = rn are regular values. Consequently there is a smooth path from qεn
to another point in ∂D within F−1(rc − εn). The sequence of regular values
{rc − εn}n induces a sequence of smooth paths that gradually approaches the
set F−1(rc) with εn −→ 0, as illustrated in Fig. 7.

Each path of the succession defines a subset Rn ⊂ D bounded partially
by the smooth path and partially by the boundary of D itself. Each region
in the sequence is a subset of the next, because two smooth paths of differ-
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ent regular values cannot cross, and the sequence of regular values increases
monotonically.

The union of all those regions R =
⋃
nRn defines a set in D that, by

construction, is partially bounded by ∂D and the set F−1(rc). The section of
that boundary within the set F−1(rc) provides the desired path. Since {qεn}
converges on q, the limit path connects q with another point in ∂D. Thus in
Fig. 7 while F−1(rc) might not be a manifold, and the path obtained might
not be smooth, it still exists.

Fig. 7. For every εn, there is a smooth path in F−1(rc− εn) from qεn . The sequence
of those paths defines in the limit the escape path from q.

5.4 Requirements Revisited

Theorem 1 imposes three requirements on the object O as a subset of Rd:
compactness, connectedness and contractibility. The theorem implies their
sufficiency, but not their necessity.

• Compactness: One of the requirements when building the contractible
curve is that all crossings through Mc should be known noncaging con-
figurations, except for c. We obtain this by constructing a ball around
the object, which easily addresses the issue for compact objects. However,
noncompact objects do not necessarily falsify the theorem.

• Connectedness: We used connectedness to build the contractible curve in
a systematic way. For nonconnected objects (Fig. 8) it may be impossible
to undo the winding number of α ⊕ α outside the ball B, but there may
be some other way to construct a suitable contractible curve.

• Contractibility: If the object O has holes and d > 2, we may again be
unable to close the path in a contractible way outside the ball B.
Contractibility is not required in the planar case, because:
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– If one or two fingers are inside a hole, the object is clearly caged,
squeezing caged and stretching caged.

– If none of the fingers are inside a hole, the hole is irrelevant and The-
orem 1 applies directly.

Fig. 8. Impossible to undo the winding number of α ⊕ α outside B, due to the
nonconnectedness of O.

5.5 Implications

The squeezing and stretching theorem (theorem 1) gives an interesting char-
acterization of caging configurations: if an object is trapped, it will remain
trapped even if we allow the point fingers a partial motion freedom: squeezing
in some cases, stretching in others.

This squeezing and stretching result connects caging to immobilization.
Suppose that c is a caging configuration, and for example it is the squeezing
caging case. By definition, c lies in a compact connected component of M free∩
M c. If the fingers squeeze, even in a blind way, the motion is bounded, and the
path must inevitably end in an immobilization, at least for frictionless generic
shapes. Caging helps to solve the immobilization problem by thickening the
zero measure set of immobilizing configurations to regions of positive measure.

The immobilization problem is the problem of finding a manipulator con-
figuration that eliminates the object’s freedom of movement, given a geometric
description of its shape and location. The formulation of the problem has two
main inconveniences:
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• The set of solutions to the immobilization problem is a subset of the con-
tact space. Therefore, the set of solutions to the problem, as a subset of
the configuration space of the manipulator, has measure zero.

• The theoretical formulation of the problem relies on unrealistic assump-
tions such as having a perfect geometrical model of the object both in terms
of shape and location, and the ability to place the manipulator perfectly
in a specific configuration.

These two properties would seem to make immobilization impractical, since
any error would make it impossible to place the manipulator on a set of
measure zero.

Nonetheless, manipulators do achieve immobilizing configurations. Feed-
back of contact sensor data is part of the answer. More importantly, the
inherent compliance of the effector mechanism, the servos, and the object can
accommodate errors. Even if the robot does not reach the desired configura-
tion, it may reach a nearby immobilizing configuration.

The squeezing and stretching theorem facilitates the process of achieving
an immobilization by providing an initial condition and a blind strategy for
achieving an immobilization.

6 Conclusions and Future Work

Our main result is that any caging of a compact connected contractible object
in Rd by two points is either a squeezing caging, a stretching caging, or both.
This generalizes the result of Vahedi and van der Stappen [18] which assumes
a polygonal object in the plane. Vahedi and van der Stappen developed the
squeezing and stretching caging idea to compute the caging configurations for
planar polygons. The generalization suggests that the squeezing and stretching
caging idea is a fundamental attribute giving structure to the configuration
space of two-fingered manipulators.

Section 5.5 shows that Theorem 1 addresses the immobilization problem.
From any caging configuration there is a blind policy to immobilize the object.
The result says that caging regions are partially bounded by immobilizations,
and that there is always a policy to reach them. Therefore, caging thickens the
zero measure set of immobilizing configurations to regions of positive measure.

Does the result generalize to n fingers? One approach is to define an n fin-
ger manipulator with a one-dimensional shape space [2], but there are other
possible generalizations. One advantage of the topological approach is that
the entire proof is independent of dimension, and should yield a natural gen-
eralization of the squeezing-stretching concept to the case of n fingers.
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A. Contractible Paths

Proposition 3 (Characterization of contractible paths). A closed path
α at c is contractible in M free if and only if Πi (α) describes a contractible
path in P free

i ∀i.

Proof. The result is a consequence of M being the cartesian product of the
configuration space of each finger point, M = ⊗ni=1Pi. Let’s prove both im-
plications:

[⇒] Suppose α is contractible in M free. Let H(t, s) be the corresponding
path homotopy. The natural projections of α are the closed curves Πi (α) ⊂
P free
i . We need to show that αi is contractible in P free

i ∀i.
Consider then the natural projections of the homotopy H(s, t):

Hi : [0, 1]× [0, 1] H−→ M free Πi−→ P free
i

(t, s) → H(t, s) → Πi (H(t, s))
(9)

Each Hi is a continuous map because it is a composition of continuous maps
(Hi = Πi ◦H). Each Hi is a homotopy of paths because:

Hi(t, 0) = Πi (H(t, 0)) = Πi (α(t)) = αi(t) ∀t
Hi(t, 1) = Πi (H(t, 1)) = Πi(c) ∀t
Hi(0, s) = Hi(1, s) = Πi (H(0, s)) = Πi(c) ∀s

(10)

We conclude that each αi is contractible.

[⇐] Suppose that each natural projection αi = Πi (α) is contractible in
its corresponding space P free

i . Let Hi(t, s) ⊂ P free
i be the corresponding path

homotopy.
Consider the path in M , α = (α1 . . . αn). Note that by construction α ⊂

M free:

Suppose ∃ t | α(t) /∈ M free eq.(1)⇐⇒ α(t) ∈ OM ⇐⇒ ∃ i | α(t) ∈ OMi . By
definition of OMi that happens iff αi(t) ∈ O. However this contradicts
αi(t) being defined on P free

i by hypothesis. Therefore we conclude that
α ⊂M free and is well defined.

Consider now the map H = (H1(t, s) . . . Hn(t, s)). same way we proved it for
α we know that H(t, s) ⊂ M free, and therefore is well defined. It suffices to
check that:

H(t, 0) = (α1(t) . . . αn(t)) = α(t) ∀t
H(t, 1) = (α1(0) . . . αn(0)) = p ∀t
H(0, s) = H(1, s) = (α1(0) . . . αn(0)) = p ∀t

(11)

to conclude that H is a path homotopy for α and therefore, α is contractible.
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